1
2
Fork 0
mirror of https://github.com/mat-1/azalea.git synced 2025-08-02 14:26:04 +00:00

implement mtd* lite

This commit is contained in:
mat 2022-10-08 23:30:04 -05:00
parent 803dc6861e
commit 70fcdf0718
5 changed files with 428 additions and 8 deletions

4
Cargo.lock generated
View file

@ -244,6 +244,10 @@ dependencies = [
name = "azalea-pathfinder" name = "azalea-pathfinder"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"anyhow",
"async-trait",
"azalea",
"azalea-client",
"num-traits", "num-traits",
"priority-queue", "priority-queue",
] ]

View file

@ -1,10 +1,14 @@
[package] [package]
edition = "2021"
name = "azalea-pathfinder" name = "azalea-pathfinder"
version = "0.1.0" version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies] [dependencies]
anyhow = "1.0.65"
async-trait = "0.1.57"
azalea = {version = "0.1", path = "../azalea"}
azalea-client = { version = "0.1.0", path = "../azalea-client" }
num-traits = "0.2.15" num-traits = "0.2.15"
priority-queue = "1.2.3" priority-queue = "1.2.3"

View file

@ -39,14 +39,14 @@ pub struct DStarLite<
W: PartialOrd + Eq + Default + Copy + num_traits::Bounded + Debug, W: PartialOrd + Eq + Default + Copy + num_traits::Bounded + Debug,
HeuristicFn: Fn(&N, &N) -> W, HeuristicFn: Fn(&N, &N) -> W,
SuccessorsFn: Fn(&N) -> Vec<EdgeTo<N, W>>, SuccessorsFn: Fn(&N) -> Vec<EdgeTo<N, W>>,
PredcessorsFn: Fn(&N) -> Vec<EdgeTo<N, W>>, PredecessorsFn: Fn(&N) -> Vec<EdgeTo<N, W>>,
> { > {
/// Rough estimate of how close we are to the goal. Lower = closer. /// Rough estimate of how close we are to the goal. Lower = closer.
pub heuristic: HeuristicFn, pub heuristic: HeuristicFn,
/// Get the nodes that can be reached from the current one /// Get the nodes that can be reached from the current one
pub successors: SuccessorsFn, pub successors: SuccessorsFn,
/// Get the nodes that would direct us to the current node /// Get the nodes that would direct us to the current node
pub predecessors: PredcessorsFn, pub predecessors: PredecessorsFn,
pub start: Cow<'a, N>, pub start: Cow<'a, N>,
start_last: Cow<'a, N>, start_last: Cow<'a, N>,
@ -231,10 +231,6 @@ impl<
} else { } else {
let g_old = u_score.g; let g_old = u_score.g;
u_score.g = W::max_value(); u_score.g = W::max_value();
// for all s in Pred(u) + {u}
// if (rhs(s) = c(s, u) + g_old)
// if (s != s_goal) rhs(s) = min s' in Succ(s) (c(s, s') + g(s'))
// update_vertex(s)
for s in ((self.predecessors)(&u)).into_iter().chain( for s in ((self.predecessors)(&u)).into_iter().chain(
[EdgeTo { [EdgeTo {
target: u, target: u,

View file

@ -1,3 +1,45 @@
mod dstarlite; #![feature(let_chains)]
mod dstarlite;
mod mtdstarlite;
use async_trait::async_trait;
use azalea::{Client, Event};
pub use dstarlite::DStarLite; pub use dstarlite::DStarLite;
pub use mtdstarlite::MTDStarLite;
use std::sync::{Arc, Mutex};
// #[derive(Default)]
// pub struct Plugin {
// pub state: Arc<Mutex<State>>,
// }
// #[derive(Default)]
// pub struct State {
// // pathfinder: Option<DStarLite< Node, FloatOrd<f32>>>,
// }
// #[async_trait]
// impl azalea::Plugin for Plugin {
// async fn handle(self: Arc<Self>, bot: Client, event: Arc<Event>) {
// // match *
// }
// }
// pub trait Trait {
// fn goto(&self, goal: impl Goal);
// }
// impl Trait for azalea_client::Client {
// fn goto(&self, goal: impl Goal) {
// let start = BlockPos::from(self.position());
// let pf = DStarLite::new();
// }
// }
// // fn heuristt
// pub trait Goal {
// fn heuristic(&self, x: i32, y: i32) -> f32;
// }

View file

@ -0,0 +1,374 @@
//! An implementation of Moving Target D* Lite as described in
//! <http://idm-lab.org/bib/abstracts/papers/aamas10a.pdf>
//!
//! Future optimization attempt ideas:
//! - Use a different priority queue (e.g. fibonacci heap)
//! - Use FxHash instead of the default hasher
//! - Have `par` be a raw pointer
//! - Try borrowing vs copying the Node in several places (like state_mut)
//! - Store edge costs in their own map
use priority_queue::DoublePriorityQueue;
use std::{
collections::HashMap,
fmt::Debug,
hash::Hash,
ops::{Add, Sub},
};
/// Nodes are coordinates.
pub struct MTDStarLite<
N: Eq + Hash + Copy + Debug + Sub<Output = NDelta> + Add<NDelta, Output = N>,
W: PartialOrd + Eq + Default + Copy + num_traits::Bounded + Debug,
NDelta,
HeuristicFn: Fn(&N, &N) -> W,
SuccessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
PredecessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
> {
/// Returns a rough estimate of how close we are to the goal. Lower = closer.
pub heuristic: HeuristicFn,
/// Returns the nodes that can be reached from the given node.
pub successors: SuccessorsFn,
/// Returns the nodes that would direct us to the given node.
pub predecessors: PredecessorsFn,
start: N,
goal: N,
// TODO: these are only used because the paper does it like this
// we should get rid of these and only rely on `start` and `goal` in the
// future
pub new_start: N,
pub new_goal: N,
old_start: N,
old_goal: N,
k_m: W,
open: DoublePriorityQueue<N, Priority<W>>,
node_states: HashMap<N, NodeState<N, W>>,
updated_edge_costs: Vec<ChangedEdge<N, W>>,
/// This only exists so it can be referenced by `state()` when there's no state.
default_state: NodeState<N, W>,
}
impl<
N: Eq + Hash + Copy + Debug + Sub<Output = NDelta> + Add<NDelta, Output = N>,
W: PartialOrd + Eq + Add<Output = W> + Default + Copy + num_traits::Bounded + Debug,
NDelta,
HeuristicFn: Fn(&N, &N) -> W,
SuccessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
PredecessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
> MTDStarLite<N, W, NDelta, HeuristicFn, SuccessorsFn, PredecessorsFn>
{
fn calculate_key(&self, n: &N) -> Priority<W> {
let s = self.state(n);
let min_score = if s.g < s.rhs { s.g } else { s.rhs };
Priority(
if min_score == W::max_value() {
min_score
} else {
min_score + (self.heuristic)(n, &self.goal) + self.k_m
},
min_score,
)
}
pub fn new(
start: N,
goal: N,
heuristic: HeuristicFn,
successors: SuccessorsFn,
predecessors: PredecessorsFn,
) -> Self {
let open = DoublePriorityQueue::default();
let k_m = W::default();
let known_nodes = vec![start, goal];
let mut pf = MTDStarLite {
heuristic,
successors,
predecessors,
start,
goal,
new_start: start,
new_goal: goal,
old_start: start,
old_goal: goal,
k_m,
open,
node_states: HashMap::new(),
updated_edge_costs: Vec::new(),
default_state: NodeState::default(),
};
for n in &known_nodes {
*pf.state_mut(n) = NodeState::default();
}
(*pf.state_mut(&start)).rhs = W::default();
pf.open.push(start, pf.calculate_key(&start));
pf
}
fn update_state(&mut self, n: &N) {
let u = self.state_mut(n);
if u.g != u.rhs {
if self.open.get(n).is_some() {
self.open.change_priority(n, self.calculate_key(n));
} else {
self.open.push(*n, self.calculate_key(n));
}
} else if self.open.get(n).is_some() {
self.open.remove(n);
}
}
fn compute_cost_minimal_path(&mut self) {
while {
if let Some((_, top_key)) = self.open.peek_min() {
(top_key < &self.calculate_key(&self.goal)) || {
let goal_state = self.state(&self.goal);
goal_state.rhs > goal_state.g
}
} else {
false
}
} {
let (u_node, k_old) = self.open.pop_min().unwrap();
let k_new = self.calculate_key(&u_node);
if k_old < k_new {
self.open.change_priority(&u_node, k_new);
continue;
}
let u = self.state_mut(&u_node);
if u.g > u.rhs {
u.g = u.rhs;
let u = self.state(&u_node);
self.open.remove(&u_node);
for edge in (self.successors)(&u_node) {
let s_node = edge.target;
let s = self.state(&s_node);
let u = self.state(&u_node);
if s_node != self.start && (s.rhs > u.g + edge.cost) {
let s_rhs = u.g + edge.cost;
let s = self.state_mut(&s_node);
s.par = Some(u_node);
s.rhs = s_rhs;
self.update_state(&s_node);
}
}
} else {
u.g = W::max_value();
let u_edge = Edge {
target: u_node,
cost: W::default(),
};
for edge in (self.successors)(&u_node)
.iter()
.chain([&u_edge].into_iter())
{
let s_node = edge.target;
let s = self.state(&s_node);
if s_node != self.start && s.par == Some(u_node) {
let mut min_pred = u_node;
let mut min_score = W::max_value();
for edge in (self.predecessors)(&s_node) {
let s = self.state(&edge.target);
let score = s.g + edge.cost;
if score < min_score {
min_score = score;
min_pred = edge.target;
}
}
let s = self.state_mut(&s_node);
s.rhs = min_score;
if s.rhs == W::max_value() {
s.par = None;
} else {
s.par = Some(min_pred);
}
}
self.update_state(&s_node);
}
}
}
}
pub fn find_path(&mut self) -> Option<()> {
if self.start == self.goal {
return None;
}
self.old_start = self.start;
self.old_goal = self.goal;
self.compute_cost_minimal_path();
if self.state(&self.goal).rhs == W::max_value() {
// no path exists
return None;
}
let mut reverse_path = vec![];
// identify a path from sstart to sgoal using the parent pointers
let mut target = self.state(&self.goal).par;
while !(Some(self.start) == target) && let Some(this_target) = target {
// hunter follows path from self.start to self.goal;
reverse_path.push(this_target);
target = self.state(&this_target).par;
}
// if hunter caught target {
// return None;
// }
self.start = self.new_start;
self.goal = self.new_goal;
self.k_m = self.k_m + (self.heuristic)(&self.goal, &self.old_goal);
if self.old_start != self.start {
self.optimized_deletion();
}
while let Some(edge) = self.updated_edge_costs.pop() {
let (u_node, v_node) = (edge.predecessor, edge.successor);
// update the edge cost c(u, v);
if edge.old_cost > edge.cost {
let u_g = self.state(&u_node).g;
if v_node != self.start && self.state(&v_node).rhs > u_g + edge.cost {
let v = self.state_mut(&v_node);
v.par = Some(u_node);
v.rhs = u_g + edge.cost;
}
} else if v_node != self.start && self.state(&v_node).par == Some(u_node) {
let mut min_pred = u_node;
let mut min_score = W::max_value();
for edge in (self.predecessors)(&v_node) {
let s = self.state(&edge.target);
let score = s.g + edge.cost;
if score < min_score {
min_score = score;
min_pred = edge.target;
}
}
let v = self.state_mut(&v_node);
v.rhs = min_score;
if v.rhs == W::max_value() {
v.par = None;
} else {
v.par = Some(min_pred);
}
self.update_state(&v_node);
}
}
Some(())
}
fn optimized_deletion(&mut self) {
let start = self.start;
self.state_mut(&start).par = None;
let mut min_pred = self.old_start;
let mut min_score = W::max_value();
for edge in (self.predecessors)(&self.old_start) {
let s = self.state(&edge.target);
let score = s.g + edge.cost;
if score < min_score {
min_score = score;
min_pred = edge.target;
}
}
let old_start = self.old_start;
let s = self.state_mut(&old_start);
s.rhs = min_score;
if s.rhs == W::max_value() {
s.par = None;
} else {
s.par = Some(min_pred);
}
self.update_state(&old_start);
}
fn state(&self, n: &N) -> &NodeState<N, W> {
self.node_states.get(n).unwrap_or(&self.default_state)
}
fn state_mut(&mut self, n: &N) -> &mut NodeState<N, W> {
self.node_states.entry(*n).or_default()
}
}
#[derive(Eq, PartialEq, Debug)]
pub struct Priority<W>(W, W)
where
W: PartialOrd + Debug;
impl<W: PartialOrd + Debug> PartialOrd for Priority<W> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
if self.0 < other.0 {
Some(std::cmp::Ordering::Less)
} else if self.0 > other.0 {
Some(std::cmp::Ordering::Greater)
} else if self.1 < other.1 {
Some(std::cmp::Ordering::Less)
} else if self.1 > other.1 {
Some(std::cmp::Ordering::Greater)
} else {
Some(std::cmp::Ordering::Equal)
}
}
}
impl<W: PartialOrd + Debug + Eq> Ord for Priority<W> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.partial_cmp(other)
.expect("Partial compare should not fail for Priority")
}
}
#[derive(Debug)]
pub struct NodeState<N: Eq + Hash + Copy + Debug, W: Default + num_traits::Bounded + Debug> {
pub g: W,
pub rhs: W,
// future possible optimization: try making this a pointer
pub par: Option<N>,
}
impl<N: Eq + Hash + Copy + Debug, W: Default + num_traits::Bounded + Debug> Default
for NodeState<N, W>
{
fn default() -> Self {
NodeState {
g: W::max_value(),
rhs: W::max_value(),
par: None,
}
}
}
pub struct Edge<N: Eq + Hash + Copy, W: PartialOrd + Copy> {
pub target: N,
pub cost: W,
}
pub struct ChangedEdge<N: Eq + Hash + Clone, W: PartialOrd + Copy> {
pub predecessor: N,
pub successor: N,
pub old_cost: W,
pub cost: W,
}