mirror of
https://github.com/mat-1/azalea.git
synced 2025-08-02 14:26:04 +00:00
374 lines
12 KiB
Rust
374 lines
12 KiB
Rust
//! An implementation of Moving Target D* Lite as described in
|
|
//! <http://idm-lab.org/bib/abstracts/papers/aamas10a.pdf>
|
|
//!
|
|
//! Future optimization attempt ideas:
|
|
//! - Use a different priority queue (e.g. fibonacci heap)
|
|
//! - Use FxHash instead of the default hasher
|
|
//! - Have `par` be a raw pointer
|
|
//! - Try borrowing vs copying the Node in several places (like state_mut)
|
|
//! - Store edge costs in their own map
|
|
|
|
use priority_queue::DoublePriorityQueue;
|
|
use std::{
|
|
collections::HashMap,
|
|
fmt::Debug,
|
|
hash::Hash,
|
|
ops::{Add, Sub},
|
|
};
|
|
|
|
/// Nodes are coordinates.
|
|
pub struct MTDStarLite<
|
|
N: Eq + Hash + Copy + Debug + Sub<Output = NDelta> + Add<NDelta, Output = N>,
|
|
W: PartialOrd + Eq + Default + Copy + num_traits::Bounded + Debug,
|
|
NDelta,
|
|
HeuristicFn: Fn(&N, &N) -> W,
|
|
SuccessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
|
|
PredecessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
|
|
> {
|
|
/// Returns a rough estimate of how close we are to the goal. Lower = closer.
|
|
pub heuristic: HeuristicFn,
|
|
/// Returns the nodes that can be reached from the given node.
|
|
pub successors: SuccessorsFn,
|
|
/// Returns the nodes that would direct us to the given node.
|
|
pub predecessors: PredecessorsFn,
|
|
|
|
start: N,
|
|
goal: N,
|
|
|
|
// TODO: these are only used because the paper does it like this
|
|
// we should get rid of these and only rely on `start` and `goal` in the
|
|
// future
|
|
pub new_start: N,
|
|
pub new_goal: N,
|
|
|
|
old_start: N,
|
|
old_goal: N,
|
|
|
|
k_m: W,
|
|
open: DoublePriorityQueue<N, Priority<W>>,
|
|
node_states: HashMap<N, NodeState<N, W>>,
|
|
updated_edge_costs: Vec<ChangedEdge<N, W>>,
|
|
|
|
/// This only exists so it can be referenced by `state()` when there's no state.
|
|
default_state: NodeState<N, W>,
|
|
}
|
|
|
|
impl<
|
|
N: Eq + Hash + Copy + Debug + Sub<Output = NDelta> + Add<NDelta, Output = N>,
|
|
W: PartialOrd + Eq + Add<Output = W> + Default + Copy + num_traits::Bounded + Debug,
|
|
NDelta,
|
|
HeuristicFn: Fn(&N, &N) -> W,
|
|
SuccessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
|
|
PredecessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
|
|
> MTDStarLite<N, W, NDelta, HeuristicFn, SuccessorsFn, PredecessorsFn>
|
|
{
|
|
fn calculate_key(&self, n: &N) -> Priority<W> {
|
|
let s = self.state(n);
|
|
let min_score = if s.g < s.rhs { s.g } else { s.rhs };
|
|
Priority(
|
|
if min_score == W::max_value() {
|
|
min_score
|
|
} else {
|
|
min_score + (self.heuristic)(n, &self.goal) + self.k_m
|
|
},
|
|
min_score,
|
|
)
|
|
}
|
|
|
|
pub fn new(
|
|
start: N,
|
|
goal: N,
|
|
heuristic: HeuristicFn,
|
|
successors: SuccessorsFn,
|
|
predecessors: PredecessorsFn,
|
|
) -> Self {
|
|
let open = DoublePriorityQueue::default();
|
|
let k_m = W::default();
|
|
|
|
let known_nodes = vec![start, goal];
|
|
|
|
let mut pf = MTDStarLite {
|
|
heuristic,
|
|
successors,
|
|
predecessors,
|
|
|
|
start,
|
|
goal,
|
|
|
|
new_start: start,
|
|
new_goal: goal,
|
|
|
|
old_start: start,
|
|
old_goal: goal,
|
|
|
|
k_m,
|
|
open,
|
|
node_states: HashMap::new(),
|
|
updated_edge_costs: Vec::new(),
|
|
|
|
default_state: NodeState::default(),
|
|
};
|
|
|
|
for n in &known_nodes {
|
|
*pf.state_mut(n) = NodeState::default();
|
|
}
|
|
(*pf.state_mut(&start)).rhs = W::default();
|
|
pf.open.push(start, pf.calculate_key(&start));
|
|
|
|
pf
|
|
}
|
|
|
|
fn update_state(&mut self, n: &N) {
|
|
let u = self.state_mut(n);
|
|
if u.g != u.rhs {
|
|
if self.open.get(n).is_some() {
|
|
self.open.change_priority(n, self.calculate_key(n));
|
|
} else {
|
|
self.open.push(*n, self.calculate_key(n));
|
|
}
|
|
} else if self.open.get(n).is_some() {
|
|
self.open.remove(n);
|
|
}
|
|
}
|
|
|
|
fn compute_cost_minimal_path(&mut self) {
|
|
while {
|
|
if let Some((_, top_key)) = self.open.peek_min() {
|
|
(top_key < &self.calculate_key(&self.goal)) || {
|
|
let goal_state = self.state(&self.goal);
|
|
goal_state.rhs > goal_state.g
|
|
}
|
|
} else {
|
|
false
|
|
}
|
|
} {
|
|
let (u_node, k_old) = self.open.pop_min().unwrap();
|
|
let k_new = self.calculate_key(&u_node);
|
|
if k_old < k_new {
|
|
self.open.change_priority(&u_node, k_new);
|
|
continue;
|
|
}
|
|
let u = self.state_mut(&u_node);
|
|
if u.g > u.rhs {
|
|
u.g = u.rhs;
|
|
let u = self.state(&u_node);
|
|
self.open.remove(&u_node);
|
|
for edge in (self.successors)(&u_node) {
|
|
let s_node = edge.target;
|
|
let s = self.state(&s_node);
|
|
let u = self.state(&u_node);
|
|
if s_node != self.start && (s.rhs > u.g + edge.cost) {
|
|
let s_rhs = u.g + edge.cost;
|
|
let s = self.state_mut(&s_node);
|
|
s.par = Some(u_node);
|
|
s.rhs = s_rhs;
|
|
self.update_state(&s_node);
|
|
}
|
|
}
|
|
} else {
|
|
u.g = W::max_value();
|
|
let u_edge = Edge {
|
|
target: u_node,
|
|
cost: W::default(),
|
|
};
|
|
for edge in (self.successors)(&u_node)
|
|
.iter()
|
|
.chain([&u_edge].into_iter())
|
|
{
|
|
let s_node = edge.target;
|
|
let s = self.state(&s_node);
|
|
if s_node != self.start && s.par == Some(u_node) {
|
|
let mut min_pred = u_node;
|
|
let mut min_score = W::max_value();
|
|
|
|
for edge in (self.predecessors)(&s_node) {
|
|
let s = self.state(&edge.target);
|
|
let score = s.g + edge.cost;
|
|
if score < min_score {
|
|
min_score = score;
|
|
min_pred = edge.target;
|
|
}
|
|
}
|
|
|
|
let s = self.state_mut(&s_node);
|
|
s.rhs = min_score;
|
|
if s.rhs == W::max_value() {
|
|
s.par = None;
|
|
} else {
|
|
s.par = Some(min_pred);
|
|
}
|
|
}
|
|
self.update_state(&s_node);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn find_path(&mut self) -> Option<()> {
|
|
if self.start == self.goal {
|
|
return None;
|
|
}
|
|
|
|
self.old_start = self.start;
|
|
self.old_goal = self.goal;
|
|
|
|
self.compute_cost_minimal_path();
|
|
if self.state(&self.goal).rhs == W::max_value() {
|
|
// no path exists
|
|
return None;
|
|
}
|
|
|
|
let mut reverse_path = vec![];
|
|
|
|
// identify a path from sstart to sgoal using the parent pointers
|
|
let mut target = self.state(&self.goal).par;
|
|
while !(Some(self.start) == target) && let Some(this_target) = target {
|
|
// hunter follows path from self.start to self.goal;
|
|
reverse_path.push(this_target);
|
|
target = self.state(&this_target).par;
|
|
}
|
|
|
|
// if hunter caught target {
|
|
// return None;
|
|
// }
|
|
|
|
self.start = self.new_start;
|
|
self.goal = self.new_goal;
|
|
|
|
self.k_m = self.k_m + (self.heuristic)(&self.goal, &self.old_goal);
|
|
|
|
if self.old_start != self.start {
|
|
self.optimized_deletion();
|
|
}
|
|
|
|
while let Some(edge) = self.updated_edge_costs.pop() {
|
|
let (u_node, v_node) = (edge.predecessor, edge.successor);
|
|
// update the edge cost c(u, v);
|
|
if edge.old_cost > edge.cost {
|
|
let u_g = self.state(&u_node).g;
|
|
if v_node != self.start && self.state(&v_node).rhs > u_g + edge.cost {
|
|
let v = self.state_mut(&v_node);
|
|
v.par = Some(u_node);
|
|
v.rhs = u_g + edge.cost;
|
|
}
|
|
} else if v_node != self.start && self.state(&v_node).par == Some(u_node) {
|
|
let mut min_pred = u_node;
|
|
let mut min_score = W::max_value();
|
|
|
|
for edge in (self.predecessors)(&v_node) {
|
|
let s = self.state(&edge.target);
|
|
let score = s.g + edge.cost;
|
|
if score < min_score {
|
|
min_score = score;
|
|
min_pred = edge.target;
|
|
}
|
|
}
|
|
|
|
let v = self.state_mut(&v_node);
|
|
v.rhs = min_score;
|
|
if v.rhs == W::max_value() {
|
|
v.par = None;
|
|
} else {
|
|
v.par = Some(min_pred);
|
|
}
|
|
self.update_state(&v_node);
|
|
}
|
|
}
|
|
|
|
Some(())
|
|
}
|
|
|
|
fn optimized_deletion(&mut self) {
|
|
let start = self.start;
|
|
self.state_mut(&start).par = None;
|
|
|
|
let mut min_pred = self.old_start;
|
|
let mut min_score = W::max_value();
|
|
|
|
for edge in (self.predecessors)(&self.old_start) {
|
|
let s = self.state(&edge.target);
|
|
let score = s.g + edge.cost;
|
|
if score < min_score {
|
|
min_score = score;
|
|
min_pred = edge.target;
|
|
}
|
|
}
|
|
|
|
let old_start = self.old_start;
|
|
let s = self.state_mut(&old_start);
|
|
s.rhs = min_score;
|
|
if s.rhs == W::max_value() {
|
|
s.par = None;
|
|
} else {
|
|
s.par = Some(min_pred);
|
|
}
|
|
self.update_state(&old_start);
|
|
}
|
|
|
|
fn state(&self, n: &N) -> &NodeState<N, W> {
|
|
self.node_states.get(n).unwrap_or(&self.default_state)
|
|
}
|
|
|
|
fn state_mut(&mut self, n: &N) -> &mut NodeState<N, W> {
|
|
self.node_states.entry(*n).or_default()
|
|
}
|
|
}
|
|
|
|
#[derive(Eq, PartialEq, Debug)]
|
|
pub struct Priority<W>(W, W)
|
|
where
|
|
W: PartialOrd + Debug;
|
|
|
|
impl<W: PartialOrd + Debug> PartialOrd for Priority<W> {
|
|
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
|
|
if self.0 < other.0 {
|
|
Some(std::cmp::Ordering::Less)
|
|
} else if self.0 > other.0 {
|
|
Some(std::cmp::Ordering::Greater)
|
|
} else if self.1 < other.1 {
|
|
Some(std::cmp::Ordering::Less)
|
|
} else if self.1 > other.1 {
|
|
Some(std::cmp::Ordering::Greater)
|
|
} else {
|
|
Some(std::cmp::Ordering::Equal)
|
|
}
|
|
}
|
|
}
|
|
impl<W: PartialOrd + Debug + Eq> Ord for Priority<W> {
|
|
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
|
|
self.partial_cmp(other)
|
|
.expect("Partial compare should not fail for Priority")
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct NodeState<N: Eq + Hash + Copy + Debug, W: Default + num_traits::Bounded + Debug> {
|
|
pub g: W,
|
|
pub rhs: W,
|
|
// future possible optimization: try making this a pointer
|
|
pub par: Option<N>,
|
|
}
|
|
|
|
impl<N: Eq + Hash + Copy + Debug, W: Default + num_traits::Bounded + Debug> Default
|
|
for NodeState<N, W>
|
|
{
|
|
fn default() -> Self {
|
|
NodeState {
|
|
g: W::max_value(),
|
|
rhs: W::max_value(),
|
|
par: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct Edge<N: Eq + Hash + Copy, W: PartialOrd + Copy> {
|
|
pub target: N,
|
|
pub cost: W,
|
|
}
|
|
|
|
pub struct ChangedEdge<N: Eq + Hash + Clone, W: PartialOrd + Copy> {
|
|
pub predecessor: N,
|
|
pub successor: N,
|
|
pub old_cost: W,
|
|
pub cost: W,
|
|
}
|