1
2
Fork 0
mirror of https://github.com/mat-1/azalea.git synced 2025-08-02 06:16:04 +00:00
This commit is contained in:
mat 2023-05-09 22:05:46 -05:00
parent 53d51a5ca9
commit e1e1063d15
5 changed files with 326 additions and 463 deletions

View file

@ -0,0 +1 @@
mod serializer;

View file

@ -0,0 +1,205 @@
use serde::{ser, Serialize};
use crate::Nbt;
use std;
use std::fmt::{self, Display};
use serde::de;
pub type Result<T> = std::result::Result<T, Error>;
// This is a bare-bones implementation. A real library would provide additional
// information in its error type, for example the line and column at which the
// error occurred, the byte offset into the input, or the current key being
// processed.
#[derive(Debug)]
pub enum Error {
Message(String),
}
impl Display for Error {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
match self {
Error::Message(msg) => formatter.write_str(msg),
}
}
}
impl ser::Error for Error {
fn custom<T: Display>(msg: T) -> Self {
Error::Message(msg.to_string())
}
}
impl de::Error for Error {
fn custom<T: Display>(msg: T) -> Self {
Error::Message(msg.to_string())
}
}
impl std::error::Error for Error {}
impl<'a> ser::Serializer for &'a mut Nbt {
type Ok = ();
type Error = Error;
type SerializeSeq = Self;
type SerializeTuple = Self;
type SerializeTupleStruct = Self;
type SerializeTupleVariant = Self;
type SerializeMap = Self;
type SerializeStruct = Self;
type SerializeStructVariant = Self;
fn serialize_bool(self, v: bool) -> Result<()> {
todo!()
}
fn serialize_i8(self, v: i8) -> Result<()> {
todo!()
}
fn serialize_i16(self, v: i16) -> Result<()> {
todo!()
}
fn serialize_i32(self, v: i32) -> Result<()> {
todo!()
}
fn serialize_i64(self, v: i64) -> Result<()> {
todo!()
}
fn serialize_u8(self, v: u8) -> Result<()> {
todo!()
}
fn serialize_u16(self, v: u16) -> Result<()> {
todo!()
}
fn serialize_u32(self, v: u32) -> Result<()> {
todo!()
}
fn serialize_u64(self, v: u64) -> Result<()> {
todo!()
}
fn serialize_f32(self, v: f32) -> Result<()> {
todo!()
}
fn serialize_f64(self, v: f64) -> Result<()> {
todo!()
}
fn serialize_char(self, v: char) -> Result<()> {
todo!()
}
fn serialize_str(self, v: &str) -> Result<()> {
todo!()
}
fn serialize_bytes(self, v: &[u8]) -> Result<()> {
todo!()
}
fn serialize_none(self) -> Result<()> {
todo!()
}
fn serialize_some<T: ?Sized>(self, value: &T) -> Result<()>
where
T: Serialize,
{
todo!()
}
fn serialize_unit(self) -> Result<()> {
todo!()
}
fn serialize_unit_struct(self, name: &'static str) -> Result<()> {
todo!()
}
fn serialize_unit_variant(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
) -> Result<()> {
todo!()
}
fn serialize_newtype_struct<T: ?Sized>(self, name: &'static str, value: &T) -> Result<()>
where
T: Serialize,
{
todo!()
}
fn serialize_newtype_variant<T: ?Sized>(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
value: &T,
) -> Result<()>
where
T: Serialize,
{
todo!()
}
fn serialize_seq(self, len: Option<usize>) -> Result<()> {
todo!()
}
fn serialize_tuple(self, len: usize) -> Result<()> {
todo!()
}
fn serialize_tuple_struct(self, name: &'static str, len: usize) -> Result<()> {
todo!()
}
fn serialize_tuple_variant(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
len: usize,
) -> Result<()> {
todo!()
}
fn serialize_map(self, len: Option<usize>) -> Result<()> {
todo!()
}
fn serialize_struct(self, name: &'static str, len: usize) -> Result<()> {
todo!()
}
fn serialize_struct_variant(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
len: usize,
) -> Result<()> {
todo!()
}
}

View file

@ -0,0 +1,106 @@
use std::{cmp::Reverse, collections::HashMap, fmt::Debug, hash::Hash, ops::Add};
use priority_queue::PriorityQueue;
pub fn a_star<N, W, HeuristicFn, SuccessorsFn, SuccessFn>(
start: N,
heuristic: HeuristicFn,
successors: SuccessorsFn,
success: SuccessFn,
) -> Option<Vec<N>>
where
N: Eq + Hash + Copy + Debug,
W: PartialOrd + Default + Copy + num_traits::Bounded + Debug + Add<Output = W>,
HeuristicFn: Fn(&N) -> W,
SuccessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
SuccessFn: Fn(&N) -> bool,
{
let mut open_set = PriorityQueue::new();
open_set.push(start, Reverse(Weight(W::default())));
let mut nodes: HashMap<N, Node<N, W>> = HashMap::new();
nodes.insert(
start,
Node {
data: start,
came_from: None,
g_score: W::default(),
f_score: W::max_value(),
},
);
while let Some((current_node, _)) = open_set.pop() {
if success(&current_node) {
return Some(reconstruct_path(&nodes, current_node));
}
let current_g_score = nodes
.get(&current_node)
.map(|n| n.g_score)
.unwrap_or(W::max_value());
for neighbor in successors(&current_node) {
let tentative_g_score = current_g_score + neighbor.cost;
let neighbor_g_score = nodes
.get(&neighbor.target)
.map(|n| n.g_score)
.unwrap_or(W::max_value());
if tentative_g_score < neighbor_g_score {
let f_score = tentative_g_score + heuristic(&neighbor.target);
nodes.insert(
neighbor.target,
Node {
data: neighbor.target,
came_from: Some(current_node),
g_score: tentative_g_score,
f_score,
},
);
open_set.push(neighbor.target, Reverse(Weight(f_score)));
}
}
}
None
}
fn reconstruct_path<N, W>(nodes: &HashMap<N, Node<N, W>>, current: N) -> Vec<N>
where
N: Eq + Hash + Copy + Debug,
W: PartialOrd + Default + Copy + num_traits::Bounded + Debug,
{
let mut path = vec![current];
let mut current = current;
while let Some(node) = nodes.get(&current) {
if let Some(came_from) = node.came_from {
path.push(came_from);
current = came_from;
} else {
break;
}
}
path.reverse();
path
}
pub struct Node<N, W> {
pub data: N,
pub came_from: Option<N>,
pub g_score: W,
pub f_score: W,
}
pub struct Edge<N: Eq + Hash + Copy, W: PartialOrd + Copy> {
pub target: N,
pub cost: W,
}
#[derive(PartialOrd, PartialEq)]
pub struct Weight<W: PartialOrd + Debug>(W);
impl<W: PartialOrd + Debug> Ord for Weight<W> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.0
.partial_cmp(&other.0)
.unwrap_or(std::cmp::Ordering::Equal)
}
}
impl<W: PartialOrd + Debug> Eq for Weight<W> {}

View file

@ -1,7 +1,8 @@
mod astar;
mod moves;
mod mtdstarlite;
use crate::bot::{JumpEvent, LookAtEvent};
use crate::pathfinder::astar::a_star;
use crate::{SprintDirection, WalkDirection};
use crate::app::{App, CoreSchedule, IntoSystemAppConfig, Plugin};
@ -13,6 +14,7 @@ use crate::ecs::{
schedule::IntoSystemConfig,
system::{Commands, Query, Res},
};
use astar::Edge;
use azalea_client::{StartSprintEvent, StartWalkEvent};
use azalea_core::{BlockPos, CardinalDirection};
use azalea_physics::PhysicsSet;
@ -25,8 +27,6 @@ use azalea_world::{
use bevy_tasks::{AsyncComputeTaskPool, Task};
use futures_lite::future;
use log::{debug, error};
use mtdstarlite::Edge;
pub use mtdstarlite::MTDStarLite;
use std::collections::VecDeque;
use std::sync::Arc;
@ -152,17 +152,22 @@ fn goto_listener(
edges
};
let mut pf = MTDStarLite::new(
// let mut pf = MTDStarLite::new(
// start,
// end,
// |n| goal.heuristic(n),
// successors,
// successors,
// |n| goal.success(n),
// );
let start_time = std::time::Instant::now();
let p = a_star(
start,
end,
|n| goal.heuristic(n),
successors,
successors,
|n| goal.success(n),
);
let start_time = std::time::Instant::now();
let p = pf.find_path();
let end_time = std::time::Instant::now();
debug!("path: {p:?}");
debug!("time: {:?}", end_time - start_time);

View file

@ -1,454 +0,0 @@
//! An implementation of Moving Target D* Lite as described in
//! <http://idm-lab.org/bib/abstracts/papers/aamas10a.pdf>
//!
//! Future optimization attempt ideas:
//! - Use a different priority queue (e.g. fibonacci heap)
//! - Use `FxHash` instead of the default hasher
//! - Have `par` be a raw pointer
//! - Try borrowing vs copying the Node in several places (like `state_mut`)
//! - Store edge costs in their own map
use priority_queue::DoublePriorityQueue;
use std::{collections::HashMap, fmt::Debug, hash::Hash, ops::Add};
/// Nodes are coordinates.
pub struct MTDStarLite<
N: Eq + Hash + Copy + Debug,
W: PartialOrd + Default + Copy + num_traits::Bounded + Debug,
HeuristicFn: Fn(&N) -> W,
SuccessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
PredecessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
SuccessFn: Fn(&N) -> bool,
> {
/// Returns a rough estimate of how close we are to the goal. Lower =
/// closer.
pub heuristic: HeuristicFn,
/// Returns the nodes that can be reached from the given node.
pub successors: SuccessorsFn,
/// Returns the nodes that would direct us to the given node. If the graph
/// isn't directed (i.e. you can always return to the previous node), this
/// can be the same as `successors`.
pub predecessors: PredecessorsFn,
/// Returns true if the given node is at the goal.
/// A simple implementation is to check if the given node is equal to the
/// goal.
pub success: SuccessFn,
start: N,
goal: N,
old_start: N,
old_goal: N,
k_m: W,
open: DoublePriorityQueue<N, Priority<W>>,
node_states: HashMap<N, NodeState<N, W>>,
updated_edge_costs: Vec<ChangedEdge<N, W>>,
/// This only exists so it can be referenced by `state()` when there's no
/// state.
default_state: NodeState<N, W>,
}
impl<
N: Eq + Hash + Copy + Debug,
W: PartialOrd + Add<Output = W> + Default + Copy + num_traits::Bounded + Debug,
HeuristicFn: Fn(&N) -> W,
SuccessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
PredecessorsFn: Fn(&N) -> Vec<Edge<N, W>>,
SuccessFn: Fn(&N) -> bool,
> MTDStarLite<N, W, HeuristicFn, SuccessorsFn, PredecessorsFn, SuccessFn>
{
fn calculate_key(&self, n: &N) -> Priority<W> {
let s = self.state(n);
let min_score = if s.g < s.rhs { s.g } else { s.rhs };
Priority(
if min_score == W::max_value() {
min_score
} else {
min_score + (self.heuristic)(n) + self.k_m
},
min_score,
)
}
pub fn new(
start: N,
goal: N,
heuristic: HeuristicFn,
successors: SuccessorsFn,
predecessors: PredecessorsFn,
success: SuccessFn,
) -> Self {
let open = DoublePriorityQueue::default();
let k_m = W::default();
let known_nodes = vec![start, goal];
let mut pf = MTDStarLite {
heuristic,
successors,
predecessors,
success,
start,
goal,
old_start: start,
old_goal: goal,
k_m,
open,
node_states: HashMap::new(),
updated_edge_costs: Vec::new(),
default_state: NodeState::default(),
};
for n in &known_nodes {
*pf.state_mut(n) = NodeState::default();
}
pf.state_mut(&start).rhs = W::default();
pf.open.push(start, pf.calculate_key(&start));
pf
}
fn update_state(&mut self, n: &N) {
let u = self.state_mut(n);
if u.g != u.rhs {
if self.open.get(n).is_some() {
self.open.change_priority(n, self.calculate_key(n));
} else {
self.open.push(*n, self.calculate_key(n));
}
} else if self.open.get(n).is_some() {
self.open.remove(n);
}
}
fn compute_cost_minimal_path(&mut self) {
while {
if let Some((_, top_key)) = self.open.peek_min() {
(top_key < &self.calculate_key(&self.goal)) || {
let goal_state = self.state(&self.goal);
goal_state.rhs > goal_state.g
}
} else {
false
}
} {
let (u_node, k_old) = self.open.pop_min().unwrap();
let k_new = self.calculate_key(&u_node);
if k_old < k_new {
self.open.change_priority(&u_node, k_new);
continue;
}
let u = self.state_mut(&u_node);
if u.g > u.rhs {
u.g = u.rhs;
self.open.remove(&u_node);
for edge in (self.successors)(&u_node) {
let s_node = edge.target;
let s = self.state(&s_node);
let u = self.state(&u_node);
if s_node != self.start && (s.rhs > u.g + edge.cost) {
let s_rhs = u.g + edge.cost;
let s = self.state_mut(&s_node);
s.par = Some(u_node);
s.rhs = s_rhs;
self.update_state(&s_node);
}
}
} else {
u.g = W::max_value();
let u_edge = Edge {
target: u_node,
cost: W::default(),
};
for edge in (self.successors)(&u_node)
.iter()
.chain([&u_edge].into_iter())
{
let s_node = edge.target;
let s = self.state(&s_node);
if s_node != self.start && s.par == Some(u_node) {
let mut min_pred = u_node;
let mut min_score = W::max_value();
for edge in (self.predecessors)(&s_node) {
let s = self.state(&edge.target);
let score = s.g + edge.cost;
if score < min_score {
min_score = score;
min_pred = edge.target;
}
}
let s = self.state_mut(&s_node);
s.rhs = min_score;
if s.rhs == W::max_value() {
s.par = None;
} else {
s.par = Some(min_pred);
}
}
self.update_state(&s_node);
}
}
}
}
pub fn find_path(&mut self) -> Option<Vec<N>> {
if (self.success)(&self.start) {
return None;
}
//
self.k_m = self.k_m + (self.heuristic)(&self.old_goal);
if self.old_start != self.start {
self.optimized_deletion();
}
while let Some(edge) = self.updated_edge_costs.pop() {
let (u_node, v_node) = (edge.predecessor, edge.successor);
// update the edge cost c(u, v);
if edge.old_cost > edge.cost {
let u_g = self.state(&u_node).g;
if v_node != self.start && self.state(&v_node).rhs > u_g + edge.cost {
let v = self.state_mut(&v_node);
v.par = Some(u_node);
v.rhs = u_g + edge.cost;
}
} else if v_node != self.start && self.state(&v_node).par == Some(u_node) {
let mut min_pred = u_node;
let mut min_score = W::max_value();
for edge in (self.predecessors)(&v_node) {
let s = self.state(&edge.target);
let score = s.g + edge.cost;
if score < min_score {
min_score = score;
min_pred = edge.target;
}
}
let v = self.state_mut(&v_node);
v.rhs = min_score;
if v.rhs == W::max_value() {
v.par = None;
} else {
v.par = Some(min_pred);
}
self.update_state(&v_node);
}
}
//
self.old_start = self.start;
self.old_goal = self.goal;
self.compute_cost_minimal_path();
if self.state(&self.goal).rhs == W::max_value() {
// no path exists
return None;
}
let mut reverse_path = vec![self.goal];
// identify a path from sstart to sgoal using the parent pointers
let mut target = self.state(&self.goal).par;
while !(Some(self.start) == target) {
let Some(this_target) = target else {
break;
};
// hunter follows path from start to goal;
reverse_path.push(this_target);
target = self.state(&this_target).par;
}
// if hunter caught target {
// return None;
// }
let path: Vec<N> = reverse_path.into_iter().rev().collect();
Some(path)
}
fn optimized_deletion(&mut self) {
let start = self.start;
self.state_mut(&start).par = None;
let mut min_pred = self.old_start;
let mut min_score = W::max_value();
for edge in (self.predecessors)(&self.old_start) {
let s = self.state(&edge.target);
let score = s.g + edge.cost;
if score < min_score {
min_score = score;
min_pred = edge.target;
}
}
let old_start = self.old_start;
let s = self.state_mut(&old_start);
s.rhs = min_score;
if s.rhs == W::max_value() {
s.par = None;
} else {
s.par = Some(min_pred);
}
self.update_state(&old_start);
}
fn state(&self, n: &N) -> &NodeState<N, W> {
self.node_states.get(n).unwrap_or(&self.default_state)
}
fn state_mut(&mut self, n: &N) -> &mut NodeState<N, W> {
self.node_states.entry(*n).or_default()
}
}
#[derive(PartialEq, Debug)]
pub struct Priority<W>(W, W)
where
W: PartialOrd + Debug;
impl<W: PartialOrd + Debug> PartialOrd for Priority<W> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
if self.0 < other.0 {
Some(std::cmp::Ordering::Less)
} else if self.0 > other.0 {
Some(std::cmp::Ordering::Greater)
} else if self.1 < other.1 {
Some(std::cmp::Ordering::Less)
} else if self.1 > other.1 {
Some(std::cmp::Ordering::Greater)
} else {
Some(std::cmp::Ordering::Equal)
}
}
}
impl<W: PartialOrd + Debug> Ord for Priority<W> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.partial_cmp(other)
.expect("Partial compare should not fail for Priority")
}
}
impl<W: PartialOrd + Debug> Eq for Priority<W> {}
#[derive(Debug)]
pub struct NodeState<N: Eq + Hash + Copy + Debug, W: Default + num_traits::Bounded + Debug> {
pub g: W,
pub rhs: W,
// future possible optimization: try making this a pointer
pub par: Option<N>,
}
impl<N: Eq + Hash + Copy + Debug, W: Default + num_traits::Bounded + Debug> Default
for NodeState<N, W>
{
fn default() -> Self {
NodeState {
g: W::max_value(),
rhs: W::max_value(),
par: None,
}
}
}
pub struct Edge<N: Eq + Hash + Copy, W: PartialOrd + Copy> {
pub target: N,
pub cost: W,
}
pub struct ChangedEdge<N: Eq + Hash + Clone, W: PartialOrd + Copy> {
pub predecessor: N,
pub successor: N,
pub old_cost: W,
pub cost: W,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_mtdstarlite() {
let maze = [
[0, 1, 0, 0, 0],
[0, 1, 0, 1, 0],
[0, 0, 0, 1, 0],
[0, 1, 0, 1, 0],
[0, 0, 1, 0, 0],
];
let width = maze[0].len();
let height = maze.len();
let goal = (4, 4);
let heuristic = |n: &(usize, usize)| -> usize {
((n.0 as isize - goal.0 as isize).abs() + (n.1 as isize - goal.1 as isize).abs())
as usize
};
let successors = |n: &(usize, usize)| -> Vec<Edge<(usize, usize), usize>> {
let mut successors = Vec::with_capacity(4);
let (x, y) = *n;
if x > 0 && maze[y][x - 1] == 0 {
successors.push(Edge {
target: ((x - 1, y)),
cost: 1,
});
}
if x < width - 1 && maze[y][x + 1] == 0 {
successors.push(Edge {
target: ((x + 1, y)),
cost: 1,
});
}
if y > 0 && maze[y - 1][x] == 0 {
successors.push(Edge {
target: ((x, y - 1)),
cost: 1,
});
}
if y < height - 1 && maze[y + 1][x] == 0 {
successors.push(Edge {
target: ((x, y + 1)),
cost: 1,
});
}
successors
};
let predecessors =
|n: &(usize, usize)| -> Vec<Edge<(usize, usize), usize>> { successors(n) };
let mut pf = MTDStarLite::new((0, 0), goal, heuristic, successors, predecessors, |n| {
n == &goal
});
let path = pf.find_path().unwrap();
assert_eq!(
path,
vec![
(0, 1),
(0, 2),
(1, 2),
(2, 2),
(2, 1),
(2, 0),
(3, 0),
(4, 0),
(4, 1),
(4, 2),
(4, 3),
(4, 4),
]
);
}
}